


Belief Structures
within Fractional Semantics:
an overview

1. Introduction

Fractional Semantics, initially introduced in [17], serves as a powerful tool
for discerning the number of proper axioms within a proposition relative
to the total number of axioms. This method underwent refinement for
modal logic [19] and expanded into the domain of beliefs in [3] and ap-
plied to the Lottery Paradox in [2]. The study demonstrated the instru-
mental role of Fractional Semantics in resolving the Lottery Paradox.

This work has two main objectives: firstly, to present in a refined way
GS4B , firstly presented in [3]—the Fractional Semantics System that in-
corporates beliefs; secondly, to introduce a nuanced categorization of be-
liefs. In [3], all beliefs are treated as true, akin to tautologies. However,
this poses a philosophical challenge, as not every proposition we believe
aligns with the certainty of a tautology. To address this, we utilize Hyper-
real numbers, signifying that a belief holds a value not of 1, but infinitesi-
mally lower—specifically, 1→ δ, where δ represents an infinitesimal value
smaller than every real number.

This approach draws inspiration fromHansson [9,10], who used hyper-
real numbers to differentiate between Full Beliefs (assigned a value of 1)
and beliefs open to revision in the presence of evidence, termed Revis-
able Beliefs. However, our aim is different: we seek a system capable of
tracking not only the count of Full Beliefs but also beliefs considered true
even if subject to revision, differenciating between them thanks to hyper-
real numbers. Fractional Semantics enables us to perform derivations and
determine the composition of the combination between tautologies, Full
Beliefs, and Revisable Beliefs.

The paper is structured as follows: in the first section, we briefly present
Fractional Semantics, referring to [2, 3, 17–19] for more examples and
proofs; in the second section, we present proofs for theorems from [3];
and in the last section, we introduce a distinction between Full Beliefs and
Revisable Beliefs within the framework of fractional semantics.
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2. Fractional Semantics
Fractional semantics is a multi-valued approach governed by pure proof-
theoretic considerations firstly introduced in [17], assigning truth values
as rational numbers in the closed interval [0,1] breaking the symmetry
between tautologies and contradictions, allowing values other than 0 for
non-logical axioms, i.e., contingent. It measures the proposition’s prox-
imity to being a tautology or a contradiction.

To enable fractional interpretation, a decidable logic L is required, dis-
played in a sequent system S meeting three conditions: bilateralism, in-
vertibility, and stability.
Bilateralism: S, as a bilateral system, generates S-derivations for any well

formed formula A of L : if A is valid, its S-derivation will be an actual
proof of A; if A is invalid, its S-derivation will provide a formal refuta-
tion of A, i.e., a proof of its unprovability.

Invertibility: each logical rule of S is invertible, meaning that the prov-
ability of its conclusion implies the provability of (each one of) its pre-
mise(s). This means that there is an algorithm to decompose uniquely
a sequent into an equivalent formula in conjunctive normal form.

Stability: two analytic S-proofs with the same end-sequent share the same
multi-set of top-sequents.

Fractional semantics is obtained by focusing on the axiomatic structure of
proofs expressed in Kleene’s one-side sequent system GS4 [13, 22]. The
system is as following:

(ax.)
" Γ, p, p

" Γ, p, q
(→)

" Γ, p ∨ q
" Γ, p " Γ, q

(∧)
" Γ, p ∧ q

GS4 is a one-sided sequent where structural properties are absorbed into
the calculus, Γ and ∆ are multisets of formulas, and p, q, . . . are atomic
formulas. As usual, ∧ indicates the conjunction and ∨ the disjunction.
There is not a rule governing negation as it is inductively defined by differ-
ent atomic formulas p and p, where p indicates the negation of p. Sequents
can be decomposed into initial sequents that are allowed to contain only
atomic formulas.

The interpretation of a formula is the result of the ratio between the
number of identity top-sequents (∆, p, p) out of the total number of top-
sequents occurring in any of its proofs. Weakening and contraction are
dropped while cut rule has the form:

" Γ, p " p,∆
(cut)

" Γ,∆
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In order to give a fractional interpretation a counterpart is needed, namely
GS4, that is the GS4 calculus maximally extended:

Definition 2.1 (GS4). The calculus GS4 is obtained from GS4 that is
able to prove any sequent and it satisfies cut-elimination à la Gentzen if its
axioms introduce only clauses [17], i.e., a sequent which consists solely of
atomic formulae [1].
Definition 2.2 (Top-sequents axioms).

top1(π): denotes the multiset of all and only π’s top-sequents introduced
by an identity axiom, i.e., those those sequents directly intro-
duced as instances of the axiom rules.;

top0(π): denotes the multiset of all and only π’s top-sequents introduced
by a complementary axiom, in other words, those axioms that
are not tautological.

Any formula A can be interpreted as the ratio between the number of
identity top-sequents (sequents introduced by the standard axiom) out of
the total number of top-sequents.

!A" = top1(π)

top1(π) + top0(π)

Definition2.3 (Top-sequents). Top-sequents represent the number of the
leaves of the proof as defined in Definition 2.2 and !Γ" denotes the value
of the formula ∨Γ where only ∨→applications appear.

top1(π): let’s call this m;
top0(π): let’s call this n;

!∨Γ" is m
n ∈ [0, 1].

From this definition it is possible to give general rules with decorated
sequents. These decorated sequents are able to keep track of the fractional
value along the proof.

(ax.)

1
1
Γ, p, p

(ax.)

1
0
∆

n
m

Γ, A,B
(→)

n
m

Γ, A ∨B

n1
m1

Γ, A n2
m2

Γ, B
(∧)

n1+n2

m1+m2
Γ, A ∧B
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Example 2.4. Let’s consider an example with the turnstile decorated:

(ax.)

1
0
p, q

(→)

1
0
p ∨ q

(ax.)

1
1
p, p

(→)

1
1
p ∨ p

(∧)

2
1
(p ∨ q) ∧ (p ∨ p)

(ax.)

1
0
r

(ax.)

1
0
t

(∧)

2
0
(r ∧ t)

(∧)

4
1
(p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)

Here, it is possible to observe that for each step of the proof, we can directly
read the fractional semantics value on the turnstile.

2.1. Framing beliefs into Fractional Semantics for classical logic
From Fractional Semantics we can do a different framework where beliefs
are incorporated into fractional semantics for classical logic by introduc-
ing a set of axioms denoted as B. These axioms, representing the true
beliefs of an agent, are treated as tautologies. The underlying philosophy
is that an agent naturally considers their own beliefs to be true.

Beliefs in this context are treated as deductively closed, implying that
any deduction made using these true beliefs is also considered true. This
reflects the idea of an agent being deductively ideal. Integrating such be-
liefs into fractional semantics can lead to obtaining values greater than
those typically permitted by fractional semantics alone.

The inspiration for this expansion comes from one of Makinson’s meth-
ods, namely pivotal-assumption consequence, used to bridge the gap be-
tween classical and non-monotonic logic by adding background assump-
tions. However, the fractional semantics approach with added beliefs dif-
fers from pivotal-assumption consequence in two key aspects. Firstly, while
Makinson used a classical two-valued semantics, fractional semantics op-
erates within a multi-valued interpretation. Secondly, pivotal-assumption
consequence assigns the value 0 if any axiom is not a proper axiom or be-
lief, whereas fractional semantics can assign values greater than 0 when a
top sequent is a tautology or a belief.

To incorporate beliefs into the system, they must be atomic; otherwise,
they need to be decomposed. The definitions of GS4B and "B are pro-
vided as follows:
Definition 2.5 (GS4B). Let B = b1, . . . , bn a set of non tautological,
non contradictory and of arbitrary complexity formulas; let B be the set
of sequents obtained from the decomposition of formulas in B and closed
under cut; let GS4 be as defined earlier, then GS4B is the system where
everything that is derived from B and from GS4 is true.
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Definition 2.6 ("B"B"B). If " is the closure relation of classical logic, then "B
is defined as the closure relation of GS4B .

The system is not Post-complete because structurality and consistency
are mutually exclusive properties in the axiomatic extension of classical
logic: adding new axioms to the system is not possible to mantain struc-
turality, i.e., substitution is dropped. Makinson highlighted this in [15]
without explicitly citing Post, even though the underlying reason is iden-
tical.
Theorem 2.7. There is no supra-classical closure relation in the same lan-
guage as classical " that is closed under substitution, except for " itself and
the total relation i.e. the relation that relates every possible premises to every
possible conclusion.
and this applies also to this system.

Now, let’s delve deeper into formalizing the system by defining the top
sequent incorporating added beliefs.
Definition 2.8.

topb(π) : represents the multiset of all and only top sequents of π intro-
duced by a belief.

The reason for introducing this new type of top sequent stems from our
desire, particularly in this context, to treat beliefs on par with identity ax-
ioms. This is because an agent invariably regards her own beliefs as true.
The updated method for calculating the value of a sequent is:

!A"B =
topb(π) + top1(π)

topb(π) + top1(π) + top0(π)

It is also possible to see the same tree with multi valued system, adding
a new rule:

(bi)

1
1
B B

Example 2.9. For example let’s consider this example where B = p, q

(b1)

1
1
B p, q

(→)

1
1
B p ∨ q

(ax.)

1
1
B p, p

(→)

1
1
B p ∨ p

(∧)

2
2
B (p ∨ q) ∧ (p ∨ p)

(ax.)

1
0
B r

(ax.)

1
0
B t

(∧)

2
0
B (r ∧ t)

(∧)

4
2
B (p ∨ q) ∧ (p ∨ p) ∧ (r ∧ t)
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It is worth noting that if this sequent was considered in classical logic,
any valuation would assign either the value 0 or 1. Something similar hap-
pens in Makinson pivotal assumption consequence, also if the belief set is
the same that we have defined earlier, because a two valued logic is there
considered.

3. Strong cut elimination
The last section pointed out that the agent is an ideal one and that they are
aware of every deduction between beliefs. This means that the belief set is
deductively closed: nothing that was not already in the set can be derived.
In order to have a deductively closed belief set it is important that every
combination of sentences, when it is possible, must be closed under cut
and the new sentences obtained in this way will be added to the belief set.

In order to eliminate cut fromGS4B themethod is taken from [18], but
it is simplified because of the nature of one-sided sequents. The method is
the following:

1. let’s consider a propositional formula bi ∈ B (B being the set of beliefs)
and decompose it using the invertible rules;

2. the procedures gives identity and non-logical sequents. Remove the
identity ones;

3. let’s contract every sequent thus obtained;
4. let’s consider two sequents Γ, p and ∆, p and add the sequent Γ,∆ to

the set of beliefs and let’s contract the set thus obtained;
5. the procedure terminates;
6. finally, take the set closed under weakening.

To emphasize the importance of accounting for the fractional value of
a formula incorporating beliefs, it is necessary to consider, as initial se-
quents, not only those obtained directly but also sequents derived via clo-
sure under cut. Let’s illustrate this with the following example:
Example 3.1. It is easy to show why the step 4. is so important. Suppose
that an agent has a newbelief: A = (p∧(t∨q))∨(t∧(t∨q)). Thefirst thing
to do in order to add that belief is to transformA in a conjunctive form: it is
easy to show that it is equivalent to " (p∨ t)∧ (t∨q)∧ (t∨ t∨q)∧ (t∨q).
Let’s decompose it in a set of clauses: " p, t, " t, q, " t, t, q, " t, q and
remove one of the copies of " t, q and the axiom " t, t, q. By the method
presented earlier the agent has to add (p ∨ t) and (t ∨ q) to the system,
but these beliefs are not cut free. To let them be cut free, it is necessary to
close them under the cut.

" p, t " t, q
(cut)

" p, q
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From the last point of the method presented earlier, it is needed to add not
only " p, t and " t, q, but also " p, q. Let’s see why: !(p∨ t)∧ (t∨ q)" has
value 1 if B = {(p, t); (t, q)}

1
1
B p, t

(→)

1
1
B p ∨ t

1
1
B t, q

(→)

1
1
B t ∨ q

(∧)

2
2
B (p ∨ t) ∧ (t ∨ q)

As it was showed, the cut is really important for a complete set of be-
liefs, but it is also necessary to see how the cut can be eliminated from the
calculus.

3.1. Elimination of cut
The elimination of cut in presence of proper axioms was firstly proposed
by Girard [6], as noted by Avron [1], upgrading the Gentzen’s standard cut
elimination algorithm. The procedure here proposed, i.e., the decompo-
sition of the formula, the add to the system and the cut of the formula to
obtain all the derivations, owes a lot to the one presented in [18].

In the article, in fact, is proved that, for any cluster of extra-logical as-
sumptions, there exists exactly one axiomatic extension of classical propo-
sitional logic that admits cut elimination. We can prove that Fractional
value does not decrease in GS4B with relation to the addition of formu-
las:

Theorem3.2. For anymultiset of atomic formulas"B Γ and"B ∆, !
∨
Γ∨∨

∆"B ≥ !
∨

Γ"B .

Proof. Toprove this is sufficient to consider a transformation of"B . In fact
if B = b1, . . . bn, then "B Γ is equal to " Γ, b1, . . . bn, changing the kind
of turnstile from the one introduced here to the classical one, as pointed
out in [15]1. Intuitively this is due to the fact that the sequent is true iff
there is a disjunction between a letter and its negation (for example bi and
bi). From this fact it is possible to consider four cases:

• if !Γ"B = !∆"B = 1, than obviously !Γ ∨∆"B = 1 as well;
• if !Γ"B = !Γ, b1, . . . , bn" = 1 and !∆"B = 0, then !Γ ∨∆"B = 1 as

well;

1 In the text the two sided version of this transformationwas used, so#B Γ becomes b1, . . . , bn # Γ,
but here because of the choice to useGS4 asmain system, it is used the one-sided classically equivalent
version # Γ, b1, . . . , bn.



58 Matteo Bizzarri

• if !∆"B = !∆, b1, . . . , bn" = 1 and !Γ"B = 0, then !Γ∨∆"B ≥ !Γ"B ,
whatever value assumes !Γ"B ;

• if !Γ"B = !∆"B = 0, then !Γ ∨∆"B ≥ !Γ"B .
It is possible to generalize this result for any context:

Theorem 3.3. For any context Γ and a formula A, such that A is not con-
tradictory with the set B, !

∨
Γ ∨A"B ≥ !Γ"B .

Proof. Let’s prove it by induction on the complexity of the formula A.
Base case: Let’s consider A atomic, then we have two cases:
A ∈ B: if A ∈ B, then !

∨
Γ, A"B = 1 and !Γ, A"B ≥ !Γ"B ;

A ≃∈ B: if A ≃∈ B, then if !
∨
Γ"B = 1, there is an atomic formula in Γ

that is in the belief set, so also !
∨
Γ, A"B = 1. If !

∨
Γ"B = 0,

b1, . . . , bn ≃∈ Γ and then !
∨

Γ ∨A"B = 0

Inductive step: Let’s consider two cases:
A ⇐ p ∧ q: by inductive hypothesis !

∨
Γ∨p"B ≥ !Γ"B and !

∨
Γ∨q"B ≥

!Γ"B . If at least one between !
∨
Γ ∨ p"B and !

∨
Γ ∨ q"B is

equal to 0, then !
∨

Γ"B = 0 for inductive hypothesis and
then !

∨
Γ ∨ (p ∧ q)"B ≥ !Γ"B . The only remaining case is

when !
∨
Γ ∨ p"B = 1 and !

∨
Γ ∨ q"B = 1:

1
1
B Γ, p

(→)

1
1
B

∨
Γ ∨ p

1
1
B Γ, q

(→)

1
1
B

∨
Γ ∨ q

(∧)

2
2
B

∨
Γ ∨ (p ∧ q)

Thus !
∨
Γ ∨ (p ∧ q)"B ≥ !Γ"B .

A ⇐ p ∨ q: by Theorem 3.2.

Theorem 3.4 (Strong cut elimination ofGS4B). The cut rule is redun-
dant when added to GS4B .
Proof. Girard was the first to notice that a different procedure could pre-
serve cut elimination even in the presence of axioms [6,16]. The proof is as
usual with double induction, the alorithm is similar to the one presented
in [20].

The set of beliefs can be “completed” through cut or without that. This
means thatGS4B is a cut-free system, because it is an axiomatic extension
of classical logic. By the way, the use of cut can alter the fractional seman-
tics value as shown in [17]. Thanks to theorem 3.4 the algorithm presented
in section 3 can be transformed in an algorithm without the presence of
cut. As a corollary of the strong cut elimination it can be obtained:
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Theorem 3.5 (Uniqueness of axiomatization inGS4B). For any cluster
of axioms in the set of beliefs B the axiomatization is unique.

Proof. See [18].

4. Full Beliefs and Revisable Beliefs
The formal model of beliefs introduced since here is a dichotomous sys-
tem, an all-or-nothing structure, where a belief is either fully accepted or
not at all. We have previously asserted that beliefs, within this framework,
are deemed true as well as tautologies. However, we can refine this catego-
rization further. In this section, we employ hyperreal numbers, as Hans-
son did [10], to distinguish between tautologies and beliefs, or more pre-
cisely, between Full Beliefs and Revisable Beliefs. These designations are
arbitrary and simply signify that a Full Belief is one whose value is im-
mutable, while a Revisable Belief is one that, though currently held as true,
remains subject to revision in light of new evidence.

The reason why hyperreal numbers are interesting in this kind of settle-
ment is twofold: on one hand, it is easy to distinguish between Revisable
and Full Beliefs; on the other hand, hyperreal numbers do not alter the
fractional final value, thereby validating all the proofs that we have made
forGS4B also for this settlement. In fact, 1→ δ inQ is equal to 1, creating
a bridge between GS4B and hyperreal numbers.

A Full Belief is characterized as a belief that remains impervious to revi-
sion under any circumstances; it is an assertion that an agent is unwilling
to discard in any situation. Conversely, an agent may hold beliefs that are
fully accepted, yet subject to revision in light of new evidence; these are
termed Revisable Beliefs, in the sense that they are beliefs that, in pres-
ence of new evidences, can be revised, while a tautology can be regarded
as a Full Belief, because it can’t be revised also in presence of new evi-
dences. For the sake of enhancing the generality of the system, we extend
this classification beyond tautologies alone. To accomplish this, we adorn
the turnstile with the expression 1→ δ, where δ represents an infinitesimal
quantity:

(bj)

1
1−δ

B bj

This notation implies that the belief bj is one of the agent’s beliefs, subject
to possible revision in a subsequent moment. The symbol δ functions as
a label derived during the proof, serving to keep track of the use of one or
more propositions that may be revised in the presence of new evidences.
This new notation doesn’t change the proves of Cut and Weakening Ad-
missibility in function [10]: st(1→ δ) = 1, because of the fact that for the
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proofs we can use only the standard part of the hyperreal number. This
means that from the point of view of proof theory nothing changed, but
something changed in the expressivness of Fractional Semantics. The rule
of conjunction still decorate the sequents in the same way:

n1
m1

Γ, A n2
m2

Γ, B
(∧)

n1+n2

m1+m2
Γ, A ∧B

the only difference is that sometimes we will have to add also infinitesimal
numbers, for example:

1
1−δ

B p 1
1−γ

B q
(∧)

2
2−(δ+γ)

B p ∧ q

Also, if the final value seems strange, it indicates that, according to Frac-
tional Semantics, the value remains 1. This implies that the derivation is
solely based on true assumptions at the moment of the derivation. On the
other hand, we have two infinitesimals, suggesting that two of the assump-
tions are beliefs that can be discarded in the presence of new evidence.
None of the beliefs used are Full Beliefs, so p ∧ q is a proposition with a
value of 1, thanks to the set B. The meaning of the value 2 → (δ + γ) is
that two of the leaves of the tree are beliefs that are possible to revise in
the presence of new information. This means that, after revision, the frac-
tional value could also assume a value of 0.5 or maybe also 0 if both of the
beliefs once revised result as false. Our idea is that this value is a way to
keep track of how many beliefs are not Full beliefs or tautologies into the
derivation.

4.1. Decomposition of a Revisable Belief
To decompose a belief, the rules remain the same as before; we must de-
compose it and close under cut. Suppose we aim to incorporate the belief
" q ∧ (r ∨ s) into the system, but it is not a full belief. To achieve this, we
need to decompose it:

" q
" r, s

(→)
" r ∨ s

(∧)
" q ∧ (r ∨ s)

Now, to indicate that the original belief " q ∧ (r ∨ s) was neither a Full
Belief nor a Tautology, we adjust its value by adding the number 1 → δ
instead of 1. This adjustment accounts for the infinitesimal nature of δ,
and its division by 2 ensures the preservation of infinitesimal characteris-
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tics.

1
1−δ

B q

1
1−γ

B r, s
(→)

1
1−γ

B r ∨ s
(∧)

2
1−(δ+γ)

B q ∧ (r ∨ s)

In the event that either " q or " r, s is employed in a derivation, we ex-
plicitly denote this value in the sequent derivation. For instance:

1
1
B p, p

(→)

1
1
B p ∨ p 1

1−δ

B q
(∧)

2
2−δ

B (p ∨ p) ∧ q

1
0
B p, q

(→)

1
0
B p ∨ q

(∧)

3
2−δ

B (p ∨ p) ∧ q ∧ (p ∨ q)

This implies that, even without knowing the initial values of the leaves, we
can stillmake observations about the value 2→δ/3: the standard part of the
derivation is the Fractional Semantics value in GS4B is 2/3 and we can
observe that there is only one infinitesimal number, indicating that only
one of the initial beliefs is a Revisable Belief. The portion that is neither
a Full Belief nor a Revisable Belief is then 1/3, representing what remains
between 2/3 and 1.

5. Conclusions
The current endeavor to unite Full Beliefs, Revisable Beliefs, and tautolo-
gies represents an initial stride towards establishing a connection between
Fractional Semantics and Probability. Fractional Semantics emerges as a
powerful instrument for delineating the intricacies of a derivation, offer-
ing valuable insights into the dynamic evolution of belief values and the
interplay between Revisable Beliefs and Full Beliefs throughout the proof.
This amalgamation serves as a foundational framework, setting the stage
for a more comprehensive exploration of the relationship between Frac-
tional Semantics and Probability.

The forthcoming phase of our researchwill delve into elucidating the in-
tricate links between Fractional Semantics and Belief Revision. This con-
stitutes another pivotal facet that underscores the significance of the intro-
duced system. The versatility of our system, embracing both the stability
of Full Beliefs and the adaptability of Revisable Beliefs, positions it as an
invaluable tool for delving into the nuances of belief dynamics and their
evolution over the course of iterative revisions. By bridging the gap be-
tween Fractional Semantics and Belief Revision, we aim to provide a more
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holistic understanding of the nuanced interplay between formal semantics
and the adaptive nature of belief systems.
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